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Representations of D-Posets 
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A generalization of an orthoalgebra, which includes the set of all effects (i.e., 
s.a. operators between 0 and 1 on a Hilbert space) is a D-poset or an effect 
algebra, equivalently. Two generalizations of test spaces the logics of which are 
D-posets are investigated and their equivalence is shown. 

I N T R O D U C T I O N  

D-posets ,  3 in t roduced in K6pka  and Chovanec  (1994), are general iza-  
tions of  or thoalgebras  in which  one drops the requi rement  that no nonzero 
e lement  be self-or thogonal .  Or thoalgebras  arise as the logics of  a lgebraic  test 
spaces (i.e., manuals) ,  and it is natural to wonder  whether  D-posets  have 
an analogous representat ion.  Two such representat ions  have recent ly been 

descr ibed  by  the authors (Dvure~enskij  and P u l m a n n o v L  1994; Wilce,  1994). 
The purpose  of  this note is compare  these two const ruct ions  and show that 
they are essent ia l ly  i somorphic .  

1. A L G E B R A I C  SETS IN A PARTIAL A B E L I A N  S E M I G R O U P  

By a part ial  Abel ian semigroup (PAS) we mean  a set S together  with 
a par t ia l ly  def ined commuta t ive  and associat ive  b inary  opera t ion  G .  4 Define 
a I b iff a G b is defined.  For  convenience,  we  assume that S contains  a 

zero, i.e., a d is t inguished e lement  0 such that 0 �9 a = a for  all a E S. We 

1 Mathematical Institute, Slovak Academy of Sciences, Bratislava, Slovakia. 
2 Department of Mathematics, University of Pittsburgh/Johnstown, Johnstown, Pennsylvania. 
3Called effect algebras in Foulis (1994) and Foulis and Bennett (1994) and D-algebras in 
Wilce (1994). 

4That is, if a �9 b, resp. a �9 (b G c), is defined, then so is b �9 a, resp. (a �9 b) G c, and the 
two are equal. 

1689 
0[)20-7748/95/0800-1689507.50/0 �9 1995 Plenum Publishing Coq~oration 



1690 Pulmannovfi and Wilce 

say that S is positive iff a �9 b = 0 implies a = b = 0, and cancelative iff 
a O b  = a ( ~ c i m p l i e s b  = c f o r a l l a ,  b , c  ~ S. 

Any positive, cancelative PAS is partially ordered by the relation a <- 
b iff a �9 x = b for some x e L. A D-poset is a positive, cancelative PAS 
L having a largest element l - - i n  other words, an element such that Va 
L, 3 ! b ~ S with a �9 b = 1 (note that such an element, if it exists, is unique). 
A D-poset in which a _L a ~ a = 0 is an orthoalgebra. 

In HedlNova  and Pulmannov~i (1994) the notion of  a generalized differ- 
ence poset has been introduced as follows. 

Let (P, -<) be a poset with the smallest element 0 and let G be a partial 
binary operation on P such that b O a is defined iff a --- b. Then O is a 
difference on (P, ---<) if and only if the following two conditions are satisfied 
for all a, b, c e P: 

(1) a O O = a .  
(2) I f a - < b - < c ,  t h e n c O b - - - c G a a n d ( c O a )  G ( c O b )  = b 

e a .  

A difference O is called cancelative if the following condition is satisfied: 

(C) I f a - - - b ,  c a n d b ( ~ a  = c O a ,  t h e n b  = c. 

A poset with a cancelative difference containing a smallest element 0 
is a generalized difference poset (GDP). 

Let (P, - ,  O)  be a poset with a difference satisfying condition (C). This 
means that for every a, b e P there is at most  one c E P such that a = c 
O b. Thus property (C) enables us to define a sum operation on P, that is, 
a partial binary operation �9 on P given by (a, b, c E P): 

(S) a �9 b is defined and a (~ b = c if and only if c O b is defined 
and a = c O b. 

By HedlNova  and Pulmannov~i (1994), Corollary 1.13, a cancelative positive 
PAS with a zero coincides with a generalized difference poset; and a unital 
cancelative positive PAS with a zero coincides with a difference poset in the 
sense o f  K6pka and Chovanec (1994). 

A congruence 5 on a PAS is an equivalence relation -- such that for all 
a , b , c  ~ S, i f a -  b a n d a O c i s d e f i n e d ,  then so is b O c, a n d a O c  
b �9 c. Let S be any PAS. Call a subset M of  S dominating iff Va e S, 3b 

S with a �9 b ~ M, and algebraic iff the relation 

a--Mbc:* 3x ~ S a O x ,  x G b  ~ M 

is a congruence. If  M is algebraic, we write S/M for S/--M, and [a]M for the 

SCalled a faithful congruence in Wilce (1994). 
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congruence class of a ~ S in S/M. It can be shown that S/-- is always a 
cancelative, unital PAS under the inherited operation [aim O [b]M = [a G 
b]M. In particular, an algebraic set is dominating (Wilce, 1994, Lemma 3.2). 

The following is useful in establishing that a set is algebraic: 

Lemma 1. Let M be dominating in S. If, for all a, b, c e S, a --~t b and 
b G c c M imply a �9 c E M, then M is algebraic. 

Proof  See Wilce (1994), Lemma 3.4. I 

By way of example, if S is the collection of subsets of  a set X dominated 
by a fixed covering s~ of X, then M = ~ is algebraic iff (Xl s~) is an algebraic 
test space (Dvure~enskij and Pulmannovfi, 1994; Foulis, 1994), and in this 
case, S/M --~ I I (N) ,  the logic of (X, s~). Such a logic is an orthoalgebra, and 
conversely, every orthoalgebra arises canonically in this way (Gudder, 1988). 
In the next section, we consider two (essentially isomorphic) constructions 
leading to a canonical representation for arbitrary D-posers. 

If  S is a PAS and M C_ S, we say that M is irredundant iff Va, b ~ M, 
b = a O x ~ x = O .  

Lemma 2. Let S be a positive PAS and M C_ S an irredundant set. Then 
M is algebraic iff M is dominating and for all a, b, c ~ S, 

a - - M b . •  

Proof. If  M is algebraic, it is dominating and, as --~4 is a congruence, 
the condition above holds. Conversely, suppose M is irredundant and domi- 
nating and that a ~M b • c ~ a • c for all a, b, c ~ M. We shall show 
that M satisfies the hypothesis of Lemma 1. Suppose that a - M  b and b �9 
c ~ M. Then a �9 c exists; hence, as M is dominating, there exists x with a 
O c O x  E M. A s a  ~ M b ,  there is some d such that a G d, d O b  E M; 
then d -- c, and so d • (a @ x). Again, since M is dominating, there exists 
some y such that d O (a O x) O y =  a O d O ( x @ y )  ~ M. B u t a O d  
M, and M is irredundant, so x �9 y = 0. Since S is positive, x = 0, whence 
a �9 c ~ M, as desired. �9 

If  S is positive and M is an irredundant algebraic set, then for all a 
M and all x ~ S, x _L a ~ x = 0. Hence, [a]M �9 [b]M = 0 iff [a]a4, [b]M = 
0. Thus, S/M is a D-poset. 

What distinguishes a general D-poset from an orthoalgebra is the possi- 
bility that a nonzero element a e L may have multiplicity greater than I. 
Indeed, if S is any PAS, we may set 

Ix(a) = sup{n E N l n . a  = a �9 " "  G a (n times) exists} 

Call Ix(a) the multiplicity of a (noting that it may equal co). We say that a 
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function f :  S ---> N is summable iff Ga~s f (a ) 'a  exists. This requires f t o  be 
finitely nonzero and f (a)  <-- Ix(a) for all a. Let F(S) be the collection of 
summable functions on S, and note that this is a PAS under pointwise addition 
(where this is defined). The following is a slight modification of Theorem 
4.2 and Lemma 3.5 in Wilce (1994). 

Lemma 3. I f  N is an algebraic subset of  S and M is the set of  summable 
functions f E F with Ga f ( a ) . a  ~ N, then M is algebraic in F and F/M 
S/N. 

As a particular example, let L be a D-poset, and take N = { 1 }. Then 
L ~ L/N, and M consists of the collection of summable functions with sum 
1. By Lemma 3, then, F(L)/M ~-- L. Thus, all D-posets arise canonically from 
an algebraic set of integer-valued functions. 

If  L is an orthoalgebra, then Ix(a) = 1 for all a ~ 0. Thus, F(L) consists 
of  {0, 1 }-valued functions, i.e., of summable subsets of L\  {0}. In this case, 
then, F(L) is exactly the manual of orthopartitions of L, and the isomorphism 
F(L)/M ~ L is the canonical one. 

Let us call an algebraic subset M of a P A S S  D-algebraic iff L/M is a 
D-poset. Note that this is equivalent to L/M being positive. 

We will call a subset M of a P A S S  an order-filter iff x E M, y J_ x 
i m p l y x O y  ~ M. 

Lemma 4. Let M C S be algebraic. If M is an order-filter, then it is 
D-algebraic. 

Proof It suffices to show that if a �9 b -~4 0, then a --~t 0. But a �9 b 
--M 0 iff there exists some c E M with a G b �9 c ~ M; in this case, a �9 
b • c, whence b _1_ c. Since M is an order-filter, b G c E M, and it follows 
t h a t a  ~M0-  �9 

Observe that S/M = {0} iff x �9 y E M for some x, y ~ M. Since [a] 
3_ [b] implies a _1_ b by the definition of a congruence, this may occur only 
if the operation G in S is totally defined. 

We now show that the order-filter generated by any algebraic set is 
D-algebraic. 

Theorem 1. Let S be a PAS and let M be an algebraic subset of  S. Then 

M l := {a ~ S : a - - M x O y ,  x E M} 

is D-algebraic. 

Proof In what follows, - denotes the perspectivity with respect to M, 
and _1 the perspectivity with respect to M ~. Since M 1 is an order-filter, it 
suffices by Lemma 4 to show that M l is algebraic. Since M is dominating, 
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so is M~, so by Lemma 1, it suffices to show that if a --~ b and b �9 c E 
Ml, then a �9 c ~ Mr. Thus, suppose that for some z E S, a �9 z E Ml, b 
�9 z ~ M. Since M is dominating, there are Zl, z2, z3 such that a �9 z �9 z~ 
E M, b O z @ z2 E M, b O c �9 z3 ~ M. It follows that a �9 zl -- b �9 z2, 
c G z3 - z @ z2. 

On the other hand, since a G z, b �9 z E M I, there are x, y ~ M and 
u , v  E S s u c h t h a t x O u - - a O z ,  y O v ~  b Q z .  It then follows that a 
G z - x O u ~ a O z O z l O u ,  hencezl  O u  ~ 0 .  Similarly, b O z ~ y  
�9 v ~ b �9 z �9 z2 �9 v implies z2 �9 v - 0. 

Now observe that if x G y ~ 0, then for any s ~ S, s 2_ x �9 y, hence 
s 2_ x. In particular, zt and z2 are orthogonal to every element of S, and we 
may have 

a O z O z l  OZ2 ~ a ~ Z l  ~ c ~ z 3  ~ b ~ z 2 O c ~  z3 

This entails a �9 c �9 zl -- b �9 c �9 z~, which implies a �9 c Q z~ �9 u ~ b 
O c O z 2 O u ,  a n d s i n c e z l  O u -  0, w e g e t a O c  ~ b O c G z 2 |  
N o w b O c  ~ M l i m p l i e s b G c O z 2 0  u ~ M ~ , w h i c h g i v e s a ~ c  
Mr, as desired. �9 

2. P A R T I A L  F U N C T I O N S  AND D-TEST SPACES 

A function f :  X ~ Z+ is sometimes interpreted as a "multiset," i.e., an 
object analogous to a set, but allowing an element to occur with (finite) 
multiplicity greater than 1. Thus, for instance, the collection of summable 
functions on a PAS may be understood as a collection of multisets. 

More generally, we shall speak of a pair (X, F)  consisting of a set X 
and a collection F of integer-valued functions f :  X ~ Z+ as a generalized 
test space. When no confusion can result, we refer simply to the generalized 
test space X, leaving F tacit. 

We refer to a function g with 0 ~ g -- f for some f ~ F as an event 
for F, and denote by %(X) the collection of all events. We note that %(X) is 
a positive, cancelative PAS under the operation ( f  �9 g)(x) = f(x) + g(x) 
provided t h a t f  + g E %(X). We say that X is algebraic (D-algebraic) iff F 
is algebraic (D-algebraic) in %(X). In the D-algebraic case, %(X)/F is a D- 
poset, which we call the logic of X, denoting it by H(X). We note that an 
algebraic set F may be replaced by a D-algebraic set F ~, if necessary. 

Another representation for a multiset involves replacing points by sets. 
Specifically, if f is a surjeetion onto a set E, we may r ega rd f - l (x )  as a set 
of  "copies" of  x E E. From this point of  view, a multiset of  elements of a 
set X is a partial function f :  I --~ X, where I is some (suitably large) set I. 

Let •(I, X) denote the collection of partial functions from I to X, that 
is, the collection of sets f C I X X such that (i, x), (i, y) ~ f ~ x = y for 
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a l l i  e I. F o r f  ~ P( I ,X) ,  let dom(f )  = {i E l13x ~ X, ( i ,x )  ~ f }  and 
ran(f)  = {x e XI3i  ~ I, (i, x) ~ f ] .  For i e dora(f) ,  we wri tef( i )  for the 
unique x E X with (i, x) e f. Note that if #(X) = 1, then P(l, X) may be 
identified in a natural way with @(/) via f ~ dora(f) .  P(I, X) becomes a 
PAS if we se t f_L g iff dom(f )  N dom(g) = 13 and l e t f O  g = f U g in 
this case. 

We shall say t h a t f  ~ P(I, X) hasfinite multiplicity iff #f- l (x)  < o~ for 
all x E X. The set •(I, X) of  partial functions from I to X with finite multiplicity 
is a sub-PAS of P. Moreover, we have a natu:al map 

+: F(I, x) ~ zx+ 

given by qb(f) = #f-~( . ) .  Thus, every partial function in 2:(I, X) gives rise 
to an integer-valued function on X. Note, too, that if dom(f )  n dom(g) = 
0, then 

~b(f) + ~b(g) = ~b(f@ g) 

Thus, + is a homomorphism from the PAS F(I, X) into the semigroup ZX+ 
(with pointwise addition). 

One may preorder P(I, X) by the relation F ~ G iff there exists an 
injection or: dom(F) --~ dom G such that F = G o or. Equivalently, F < G 
iff #F- l (x )  <- #G-l(x)  for all x E X. Functions F and G are equivalent iff 
F < G < F, in which case we write F ~ G. Evidently, 

F ~ G r d?(F) = r 

Therefore, if we work with equivalence classes of partial functions, we are 
in effect dealing with Z+-valued functions. 

In Dvure~enskij and Pulmannov~i (1994) a D-test space is defined to be 
a collection 3- of ~-equivalence classes of partial functions F: IF ~ X such 
that (i) for all x E X, 3IF] ~ 3- with x ~ ran(F) and (ii) F-l(x)  is finite for 
all x ~ ran(F). 3" is irredundant iff for all F, G ~ 3-, #F-l(x)  <- #G-l(x)  
for all x ~ X implies F = G. 6 

Let (X, 3-) be a D-test space. There is no harm in setting I = U ~ q ~  
IF and treating the functions F as elements of  F(I, X). An event for (X, 3-) 
is the ~-equivalence class [G] of a partial function G < F. The class of events 
of  (X, 3-) is denoted by %(3-). Clearly, there is a bijective correspondence IF] 

+(F)  = #F  -l  between 3- and a certain class of functions X ~ Z+. If we 
let E(X) denote the image of %(X, 3-) under +, we obtain a PAS of Z+- 
valued functions containing + (3 ) .  It is easily checked that the notions of 

6In Dvurefienskij and Pulmannovfi (1994) it is assumed that all D-test spaces are irredundant, 
but it will prove convenient to drop this requirement. Thus, our definition is, strictly speaking, 
a bit more general than that given there. 
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orthogonality and perspectivity for events [G] and [/-/] as defined in Dvure~en- 
skij and Pulmannov4 (1994) are equivalent to the notions of the same name 
for elements ~b(G) and ~b(H) of the PAS E(X). Therefore, every D-test space 
(X, if) may be reorganized into a generalized test space (X, cb(~')), and 

provides an isomorphism between the event structures preserving local 
complements and, hence, perspectivity. 

Conversely, we have the following: 

Lemma 5. Let (X, F)  be any generalized test space. Then there exists a 
D-test space (X, ~)  such that F = +(~-). 

Proof For e a c h f  E F and x e X, let lf, x be a set with cardinal i tyf(x)-- in  
particular, !t;,~ = 0 i f f (x)  = 0. Taking the sets !r,x to be pairwise disjoint as 
(x , f )  ranges over X X F, set It = Ux~x lr, x. Let Ff: If ---> X be given by Fy(i) 
= f(x),  where i e !r.x- Then ~- = {Ffl f  ~ F} is a D-test space and d~([Ff])(x) 
= #Fj-l(x) = f(x) by construction. �9 

Note that, by Lemma 2, an irredundant D-test space (X, ~-) is algebraic 
in the sense of Dvureeenskij and Pulmannov4 (1994) iff +(~-) is algebraic 
in the sense defined above. 

In Dvureeenskij and Pulmannov4 (1994), morphisms between D-test 
spaces are defined as follows. If ~b: X ~ Y and F e P(L X), then ~b(F) := 
r o F ~ P(L Y). If (X, ~-) and (Y, ~t) are D-test spaces, we call + a morphism 
between X and Y iff [+(F)] ~ ~t for all [F] ~ ~.  We have 

#~b(F)-l(y) = #F-~b- l (y )  = ~ #F-1(x) 
+(x) =y 

Let (X, 9 )  and (Y, ~) be generalized test spaces. We say that d~: X ~ Y is a 
morphism iff, for every f ~ 9 ,  the function + ( f )  defined by 

~b(f)(y) = ~ f(x) 
(b(x) =y 

belongs to ~. 

Note that if (X, ,~) and (Y, ~ )  are test spaces, then for each E E ~ ,  

+(Xe)(Y) = ~] Xe(X) = #(qb-l(y) A E) 
+(x) =y  

This is the characteristic function of a test F E ~ iff + is an outcome- 
preserving interpretation, in the sense of Foulis and Randall (1981). 

These considerations show that the notions of D-test spaces and general- 
ized test spaces coincide completely. 



1696 Pulmannov~ and Wilce 

REFERENCES 

Dvure6enskij, A. (1995). Tensor products of difference posets, Transactions of the American 
Mathematical Socie~, 347, 1043-1057. 

Dvure6enskij, D., and PulmannovS., S. (1994). D-test spaces and difference posets, Reports on 
Mathematical Physics, 34, 151-170. 

Foulis, D. J. (1994). Notes on effect algebras, preprint, University of Massachusetts, 
Amherst, Massachusetts. 

Foulis, D. J., and Bennett, M. K. (1993). Tensor products of orthoaigebras, Order, 10, 271-28Z 
Foulis, D. J., and Bennett, M. K. (1994). Effect algebras and unsharp quantum logics, Founda- 

tions of Physics, 24, 1325-1346. 
Foulis, D. J., and Randall, C. H. (1981). Empirical logic and tensor products, in Interpretations 

alwl Foundations of Quantum Theory., H. Neumann, ed., Wissenschaftsverlag, Mannheim. 
Gudder, S. (1988). Quantum Probability, Academic Press, San Diego, California. 
Hedl~ovfi, J., and Pulmannovfi, S. (1994). Generalized D-posets and orthoalgebras, preprint. 
K6pka, E, and Chovanec, E (1994). D-Posets, Mathematica Slovaca, 44, 21-34. 
Wilce, A. (1994). Perspectivity and congruence in partial Abelian semigroups, preprint, Univer- 

sity of Pittsburgh. 


